Cut-Generating Functions

نویسندگان

  • Michele Conforti
  • Gérard Cornuéjols
  • Aris Daniilidis
  • Claude Lemaréchal
  • Jérôme Malick
چکیده

In optimization problems such as integer programs or their relaxations, one encounters feasible regions of the form {x ∈ R+ : Rx ∈ S} where R is a general real matrix and S ⊂ R is a specific closed set with 0 / ∈ S. For example, in a relaxation of integer programs introduced in [ALWW2007], S is of the form Z − b where b 6∈ Z . One would like to generate valid inequalities that cut off the infeasible solution x = 0. Formulas for such inequalities can be obtained through cut-generating functions. This paper presents a formal theory of minimal cut-generating functions and maximal S-free sets which is valid independently of the particular S. This theory relies on tools of convex analysis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

How to choose what you lift

We explore the lifting question in the context of cut-generating functions. Most of the prior literature on lifting for cut-generating functions focuses on which cut-generating functions have the unique lifting property. Here we develop a general theory for understanding how to do lifting for cut-generating functions which do not have the unique lifting property.

متن کامل

Some cut-generating functions for second-order conic sets

In this paper, we study cut generating functions for conic sets. Our first main result shows that if the conic set is bounded, then cut generating functions for integer linear programs can easily be adapted to give the integer hull of the conic integer program. Then we introduce a new class of cut generating functions which are non-decreasing with respect to second-order cone. We show that, und...

متن کامل

On sublinear inequalities for mixed integer conic programs

This paper studies K-sublinear inequalities, a class of inequalities with strong relations to K-minimal inequalities for disjunctive conic sets. We establish a stronger result on the sufficiency of K-sublinear inequalities. That is, we show that when K is the nonnegative orthant or the second-order cone, K-sublinear inequalities together with the original conic constraint are always sufficient ...

متن کامل

Minimal Cut-Generating Functions are Nearly Extreme

We study continuous (strongly) minimal cut generating functions for the model where all variables are integer. We consider both the original Gomory-Johnson setting, as well as a recent extension by Cornuéjols and Yıldız. We show that for any continuous minimal or strongly minimal cut generating function, there exists an extreme cut generating function that approximates the (strongly) minimal fu...

متن کامل

Cut-Generating Functions and S-Free Sets

We consider the separation problem for sets X that are inverse images of a given set S by a linear mapping. Classical examples occur in integer programming, complementarity problems and other optimization problems. One would like to generate valid inequalities that cut off some point not lying in X , without reference to the linear mapping. Formulas for such inequalities can be obtained through...

متن کامل

Cut-Generating Functions for Integer Variables

For an integer linear program, Gomory’s corner relaxation is obtained by ignoring the nonnegativity of the basic variables in a tableau formulation. In this paper, we do not relax these nonnegativity constraints. We generalize a classical result of Gomory and Johnson characterizing minimal cut-generating functions in terms of subadditivity, symmetry, and periodicity. Our result is based on a ne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013